
Comment créer une nouvelle branche dans GIT
Git	is	a	distributed	version	control	system	used	for	tracking	changes	in	source	code	during	software	development.	It	
supports	collaboration,	allowing	multiple	developers	to	work	on	different	parts	of	a	project	simultaneously.	Git	is	known	
for	its	speed,	data	integrity,	and	support	for	non-linear	workflows.

Branching	in	Git	is	a	powerful	feature	that	enables	multiple	developers	to	work	on	different	parts	of	a	project	
simultaneously	without	interfering	with	each	other.

In	this	article,	I	will	show	you	how	to	create	a	new	branch	in	the	Git	version	control	system,	along	with	examples	and	
answers	to	frequently	asked	questions.

Creating	a	New	Branch	in	GIT
The	process	of	creating	a	new	GIT	branch	is	done	in	3	steps.	The	steps	are:	

Checking	Your	Current	Branch

Before	creating	a	new	branch,	knowing	which	branch	you're	currently	on	is	important.	Use	the	following	command:

git	status

This	command	will	show	your	current	branch	and	any	uncommitted	changes.

Creating	the	New	Branch

To	create	a	new	branch	and	switch	to	it,	use	the	git	checkout	command	with	the	-b	option,	followed	by	the	name	of	the
new	branch:

git	checkout	-b	[branch-name]

Replace	[branch-name]	with	your	desired	branch	name.

Alternatively,	you	can	create	a	branch	without	switching	to	it	using:

git	branch	[branch-name]

Pushing	the	New	Branch	to	Remote	Repository

After	creating	a	new	branch	locally,	you	can	push	it	to	the	remote	repository	using:

git	push	-u	origin	[branch-name]

This	command	sets	up	a	tracking	connection	between	your	local	branch	and	the	remote	branch.

Examples
Creating	a	Feature	Branch

git	checkout	-b	feature/login-system

This	creates	and	switches	to	a	branch	named	`feature/login-system`.

Creating	a	Hotfix	Branch

git	checkout	-b	hotfix/critical-bug

This	command	is	used	when	you	need	to	quickly	fix	a	critical	bug.

Checking	Out	an	Existing	Remote	Branch

First,	list	all	branches	including	remote	ones:

git	branch	-a

Then,	checkout	the	remote	branch:



git	checkout	-b	[branch-name]	origin/[branch-name]

Frequently	Asked	Questions
How	do	I	rename	a	branch?

To	rename	a	branch,	use:

git	branch	-m	[old-name]	[new-name]

If	you	want	to	rename	the	current	branch,	you	can	use	this	command:

git	branch	-m	[new-name]

How	can	I	delete	a	branch?

	To	delete	a	local	branch,	use:

git	branch	-d	[branch-name]

To	force	delete	a	branch	(use	with	caution):

git	branch	-D	[branch-name]

To	delete	a	remote	branch:

git	push	origin	--delete	[branch-name]

How	do	I	merge	changes	from	one	branch	to	another?

First,	switch	to	the	branch	you	want	to	merge	into:

git	checkout	[target-branch]

Then	merge	the	other	branch:

git	merge	[source-branch]

What	is	the	difference	between	git	branch	and	git	checkout	-b?

	The	command	git	branch	[branch-name]	creates	a	new	branch	but	does	not	switch	you	to	it	while	the	command	git
checkout	-b	[branch-name]	creates	a	new	branch	and	also	switches	you	to	it	immediately.

How	can	I	see	all	the	branches	in	my	repository?

To	list	all	local	branches,	use:

git	branch

To	see	both	local	and	remote	branches,	use:

git	branch	-a

Conclusion
Creating	and	managing	branches	in	Git	allows	teams	to	work	on	different	features,	fixes,	or	experiments	in	parallel
without	disrupting	the	main	codebase.	Understanding	these	concepts	is	crucial	for	efficient	and	effective	collaboration
in	software	development	projects.


